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The motion of a known Cl] unperturbed physical pendulum is considered. The 
condition for stability of Its motion (for the case when the pendulum s'us- 
pension point moves along a circle on the surface of a fixed sphere with 
constant velocity) is established. 

1. Let us consider the motion of a physical pendulum for which the point 
of suspension 0 moves along the surface of a fixed 5' of radius jq sur- 
rounding the earth. Let us consider that the forces of attraction of the 
pendulum to earth reduce to the single force mg applied at the center of 
gravity c (Flg.1) and directed along the.geocentric vertical (normal to 
the surface of the sphere). The distance 00 Is denoted by 1 . 

Let us study the motion of the pendulum in a translationally moving {nc 
coordinate system with center at the suspension point 0 . Let us introduce 
the Darboux trihedron x0, y,, p. . Let us direct its x,-axis alcng the 
vector l,_ of the absolute velocity of the suspension point 0 , the z,,-axis 
along the normal to the sphere. Let us couple the X,Y,Z axes to the pendu- 
lum in such a manner that the direction of the z-axis would coincide with 
the dll.ection of the line CO. The DendUlUm oosltlon relative to theDarboux 

trihedron is determined by the angles #, g and cp 
(Flg.2). 

Fig. 1 

Let us assume that the pendulum moments of in- 
ertia relative to the x and p-axes are the princi- 
pal moments and equal mlR; the pendulum moment 
of inertia relative to the z-axis Is denoted by 
c. 

Such a pendulum is unperturbed, i.e. the z-axis 
Is directed along the geocentric vertical [l] while 
its point of suspension moves arbitrarily over a 
fixed sphere S 

* Projections of the angular velocity u,, of the 
Darboux trlhedron on its axes have the form 

Here qa and r, are considered to be known functions of time. Evaluating 
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the pro ectlons of 
(Fig. 3 2 , we find 
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the angular velocity of the trlhedron xzv,zz on its axes 

pp -= qO sin $ sin0 - rO cosg sin0 + * cosO 

~7~ = ~j~cos$j- r,sin$fB’ (1.2) 

r2 = - q. sic 9 cos0 + F~ cosII, cos0 + $ sin0 

Here and henceforth, the dot denotes dlffer- 
entlatlon with respect to time. 

Let UI denote the vector of the.pendulum 
angular velocity. We have 

('I,,, = p3, 

Let us write the equations of pendulum motion 
J&r, /p-i 

In the form 
fz ‘ 

mlRp2’ + Cqz (r~ + cp’) - mlRqara = MxI Fig. 2 

mlRq2’ + mlRpern - Cb2 (r2 -I- cp’) = M,* 0.4) 

[C (r2 + cp’ll’ = M,* 

Here M,, M!,21and Mz,are projections of the moments of the 
forces am04 which are the forces of Inertia of the translatory 

external 
motion. 

Performing simple computations and taklng account of (l.l), we find 

M,* = -mgl sin9 - mlRqoro cosg + mlRqo2 sing, MI* = 0 (1.5) 

M,? = -mgl COS$ sin 0 -Ji mlRq,’ cos 0 + mlRqoro sin 21, sin 0 ,+ 

+ mlRqoa cos1c) sin 0 

2, The kinetic energy of the physical pendulum (Fig. 3) has the form 

1' = 1 f 3,7i’i’G1,2 X.,Ii (1:’ -1. &')2 

Since Q$. r= IO X ei, then denoting OG = 1, we have 

7' 2:. 'i2 mv '_ ,,,\'.@" .' 1).:m r~rv.[(w--U~) x 11 + 

-j- 1/Z ml it (pas -+ c/22) + ‘i, C (ra + cp’)? (2.1) 

Let us now assume that the pendulum sus- 
pension point moves along the arc of a circle, 
on the surface of a fixed sphere with a con- 
stant velocity. In this case the angular 
velocity of the Darboux trlhedron u Is 
constant and the kinetic energy of tke pen- 
dulum is explicitly independent of the time. 

Since the forces of attraction are poten- 
tlal forces, the generalized energy Integral 
c 21 

T*-TrJ+n=h (2.2) 
holds. 

Here T'z Is the part of the kinetic 
Flg. 3 energy which 1s a quadratic form of the 

generalized velocltles, TO Is the part of 
the kinetic energy Independent of the gener- 

alized velocities, n Is the potential energy of the attractive force. 

Taking account of (1.1) to (1.3) and (2.1), let us write the integral 
(2.2) In the form 
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WI = lj2 m/R (Q’” cos2e 4- e’2) + 1/2cJ (Q’ sin6 j- (P')~ + (2.3) 

-+ mlRq, (qO cos Q + r0 sin 9) COse - I/, m1.R (qO sin * - r, COS *))" sin "8 - 

--/2mlR (qncos$+ r,sirr~)2-1/2C(qUsin~- ~,cos$)~cos~~ -mglcos~cos~ = h 

bxn the third equation of the system (l-4), we obtain the other first 
integral 

TV, = c (r. 7; 'E') == H (2.4) 

3. using (1.1) to (1.51, let US write the equations of pendulum motion 
for the case of ug = const . We have 

(3.1) 

t~lR(~~*'cos*ssinO -k 'loe Gii\1;COse -t- r,*'siri*sinO --r,e'eOs*cOse+ 

-i_ *,“cos~ --q’ev sine) +C(~oco-i*+ r,siii*je*)(---p, Sin*cose$- 

-t 7. cos I# case + $‘ sine -k rp') - mLR (qO cos 9 t I’~ sin 9 + e ‘) (- qO sin + COY 0 -j- 

+ r3 cos q cos e + I+’ sirk e) =- ~2gz sin $ - dR q,r, cos 9 + fUlRq12 Sin If’ 

mlR (- qoqv’sin$ + r&'cos$ + I3") + m/R (qu Sin* sine - r. cos $ sine +~$‘%ose)x 

X(- qosin$cose -j- r,cos~#cose -+$‘sine) -C (qOsin+sine - 

- r,cosqsSine +~‘cosO) (- qusin$COse -t r,cOsgcOse ~-tq’sine i-cp’) = 

= .- mgl COSI$ sine + mlRqorJ sin@ sine + mERqo3 cos$sine 

[C (- qu sin $cosO -1 r0 COE $ cos0 + I$’ sine f cp')‘]' = 0 

The system of nonlinear Equations (3.1) has the particular solution 

%J? = 0, e = 0, q'+- l‘(j = 0 (3.Z) 

Let us Investigate its stability. 
motion 

To do this, let us set In the perturbed 

* = 33ir 8 = zz, 11:' = +, 8' -= x*, q' = - r. + x5 

and let us consider the function W = 2W, + 2row, . 
Expanding it In a power series in xl (t = 1,2,..., 5), we obtain 

W = W (0) $- (mgl - ego2 - mlRrB2)x1”+ (mgl- mlRqea- mlR4 Xt2 + 

+ mlR (~3~ + x4*) + Cx: + . . . 

Here W(0) Is the value of the function w when JC* = 0 (f, = 1,2,...,5); 
the higher order terms are denoted by dots. 

The function W - W(0) will be positive definite for sufficiently small 
XI if 

mgl - Cqo2 - mlRr$ > 0, mgl - mlRqoa - mlRQ > 0 (3.3) 

Since Its derivative Is zero by virtue of the equations of perturbed 
motion, the unperturbed motion (3.2) will bc stable upon compliance with the 
inequalities (3.3). 

If C z- mL? , the inequalities (3.3) are replaced by the singlp condition 

mgl > Cqo2 $ mlRro2 

If C<rnlR , the inequalities (3.3) reduce to the condition 

uo < y. (v2 = g/R) (3.4) 
which agrees with the condition for stability of gyro-horizon compass [3]. 

It is not difficult to show that the condition (3.4) is necessary. Todo 
this one should write the necessary conditions for the stability of the 
linearized system of equations (3.1) in the presence of small dissipative 
forces. 
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